
Authorization In PostgreSQL
Managing User Privileges In The Database

Charles Clavadetscher

KOF, ETH Zurich

VII PgCuba, La Habana, Cuba, October 2015

Introduction

Outline

1 Introduction

2 Databases and Roles

3 Schemas

4 Tables, Views and Sequences

5 Functions and Other Objects

6 Default Privileges

7 Organize Access Control

8 Conclusion

Introduction

Charles Clavadetscher

p Senior DB Engineer at KOF ETH Zurich

p Migration and reengineering of legacy databases to PostgreSQL
p Maintenance of all databases at KOF: PostgreSQL, Oracle,

MySQL and MSSQL Server
p Support in business process reengineering

p Co-founder and treasurer of the SwissPUG, the Swiss
PostgreSQL Users Group

p Member of the Swiss PostreSQL Conference organization
committee

Introduction

KOF ETH

p KOF is the Center of Economic Research of the

p ETHZ the Swiss Institute of Technology in Zurich, Switzerland

Introduction

Authentication and authorization

Authentication is the process used to verify the identity of a
user. It is a step that precedes authorization.
Most typical techniques:

p Username and password

p Public Key Infrastructure

p LDAP

Authorization is the process that takes place each time an
authenticated user requests resources from a system. It is also
known as access control.

p Roles and privileges

p The focus of this presentation

Introduction

Authentication and authorization

Authentication is the process used to verify the identity of a
user. It is a step that precedes authorization.
Most typical techniques:

p Username and password

p Public Key Infrastructure

p LDAP

Authorization is the process that takes place each time an
authenticated user requests resources from a system. It is also
known as access control.

p Roles and privileges

p The focus of this presentation

Outline

Outline

1 Introduction

2 Databases and Roles

3 Schemas

4 Tables, Views and Sequences

5 Functions and Other Objects

6 Default Privileges

7 Organize Access Control

8 Conclusion

Databases and Roles

Basic Structure of PostgreSQL

p Server

p Cluster

p Database

p Schema

p Database objects

p Tables, views and sequences
p Functions
p Others: language, type, domain, large object, foreign data

wrapper, tablespace1

1Operations in normal environment usually do not require deeper
knowledge of these objects.

Databases and Roles

Roles and Groups - 1

Since PostgreSQL 8.1 the concepts of user and group were
unified into the single object named role.
Roles:

p Exist at the level of the cluster

p Can represent a user or a group

p Can have options, configuration parameters and privileges

A superuser or a role with the option CREATEROLE are allowed
to create new roles and modify existing ones.

CREATE ROLE name [[WITH] option [...]]

Databases and Roles

Roles and Groups - 2
The options that we will look at more closely are the following2

(underlined options are the defaults if not specified):

p [SUPERUSER|NOSUPERUSER]

p [LOGIN|NOLOGIN]

p [CREATEDB|NOCREATEDB]

p [CREATEROLE|NOCREATEROLE]

p [INHERIT|NOINHERIT]

p [PASSWORD ’...’]

2You can see a full list of options using the command \h CREATE ROLE
in psql or in the PostgreSQL official documentation.

Databases and Roles

Roles and Groups - 3

Examples
Create a superuser:
CREATE ROLE charles SUPERUSER LOGIN PASSWORD ’...’;

Create a user that can create databases and roles, but is not a
superuser:
CREATE ROLE boss CREATEDB CREATEROLE LOGIN PASSWORD ’...’;

Create a user that can login using the login mechanisms of the
database:
CREATE ROLE andrew LOGIN PASSWORD ’...’;

Create a user that can login using database external
mechanisms (e.g. LDAP)
CREATE ROLE steve LOGIN;

Create a group:
CREATE ROLE sales NOLOGIN;

Databases and Roles

Privileges - 1

p Privileges specify actions allowed on objects

p Privileges can be granted or revoked to roles

p The type of privileges available depends on the object

The general syntax for granting and revoking privileges is as
follows:
GRANT {ALL|privilege(s)} ON [object type] object(s) TO {role(s)|PUBLIC}

REVOKE {ALL|privilege(s)} ON [object type] object(s) FROM {role(s)|PUBLIC}

It is also possible to grant or revoke a role to another role.
GRANT role(s) TO role(s)

REVOKE role(s) FROM role(s)

Databases and Roles

Privileges - 2

The key word PUBLIC can be used to grant or revoke privileges
(not roles) to all existing and future roles.

GRANT privilege ON object TO PUBLIC

REVOKE privilege ON object FROM PUBLIC

Notice that the owner of an object implicitly has all privileges on
the object owned.

Superusers are not subject to the authorization mechanism of
the database. Eventually it is the same as if a superuser had all
privileges granted to all objects available in the cluster.

Databases and Roles

Privileges - 3 - ACL Acronyms

Many objects have an ACL associated with it that follows a
specific format.

grantee=acl/grantor for privileges granted to a role

=acl/grantor for privileges granted to
PUBLIC, i.e. to all roles

The meaning of the specific acronyms used to designate
privileges are as follow:

r SELECT ("read")
w UPDATE ("write")
a INSERT ("append")
d DELETE

Databases and Roles

Privileges - 4 - ACL Acronyms (Continued)
D TRUNCATE
x REFERENCES
t TRIGGER
X EXECUTE
U USAGE
C CREATE
c CONNECT
T TEMPORARY

Examples

admin=arwdDxt/admin
andrew=rw/postgres
=UC/postgres

Databases and Roles

Databases - 1

p Databases are objects contained in a cluster

p A connection to PostgreSQL is always established to a database

p Databases contain schemas

p Databases can be created by superusers or users with the
option CREATEDB

CREATE DATABASE dbname [[WITH] options]3

The owner of the database is its creator or the role set in the
option OWNER at creation time or later on using

ALTER DATABASE dbname OWNER rolename

3The command \h CREATE DATABASE displays all options

Databases and Roles

Databases - 2
For the access control to the database the only option that may
be of interest is OWNER. Notice that in order to give ownership to
another user, the user creating the database must be a
superuser or a user that is a member of the role it is giving
ownership to.

Privileges that you can grant on a database:

p CONNECT

p [TEMP|TEMPORARY]

p CREATE

Databases and Roles

Databases - 3

Examples

Create a database with the current user as owner
CREATE DATABASE accounting;

Create a database with a different owner
CREATE DATABASE sales OWNER sales_manager;

Grant access to a database
GRANT CONNECT ON DATABASE accounting TO andrew;

Revoke access to a database
REVOKE CONNECT ON DATABASE accounting FROM andrew;

Outline

Outline

1 Introduction

2 Databases and Roles

3 Schemas

4 Tables, Views and Sequences

5 Functions and Other Objects

6 Default Privileges

7 Organize Access Control

8 Conclusion

Schemas

Schemas - 1
A schema can be considered as a section of a database with a
unique name within that database. The official documentation
of PostgreSQL lists some of the most typical use case
scenarios for schemas:

p To allow many users to use one database without interfering with
each other.

p To organize database objects into logical groups to make them
more manageable.

p Third-party applications can be put into separate schemas so
they do not collide with the names of other objects.

Althought these statements point out the separation, schemas
can be very useful to store shared objects between users and
applications.

Schemas

Schemas - 2 - The public schema

p A newly created database always has a schema called public4

p The owner by default is postgres, but you can change the
ownership, if you have superuser access

p Using the command \dn+ in psql you can see which schemas
are available in the database you are connected to

List of schemas
Name | Owner | Access privileges | Description

--------+----------+----------------------+------------------------
public | postgres | postgres=UC/postgres+| standard public schema

| | =UC/postgres |

p The public schema can be useful, but you can also drop it, if you
don’t have a specific use for it or change its ACL according to
your needs

4As long as no changes have been made to the template1 database

Schemas

Schemas - 3
Users having the CREATE privilege on the database (along with
superusers and the owner of the database) are allowed to
create schemas in it5.
CREATE SCHEMA schema_name [AUTHORIZATION user_name]

The clause AUTHORIZATION allows the creator to specify a
different owner if he is a superuser or a member of the grantee
role.
Example
admin@uci.localhost=> CREATE SCHEMA admin;
CREATE SCHEMA
admin@uci.localhost=> \dn+ admin

List of schemas
Name | Owner | Access privileges | Description

-------+-------+-------------------+-------------
admin | admin | |

5It is also possible to create, with a single statement, objects in the
schema. For details look at the official documentation.

Schemas

Schemas - 4 - Privileges

There are two privileges that can be granted or revoked on a
schema.

CREATE allows to create objects like tables, views, etc. in the
schema.

USAGE allows using objects available in the schema. Notice
that this alone is not enough to use the objects in the schema.
Those have their own privileges that must be granted for
specific usage. On the other hand, a role with privileges
granted on an object in the schema will not be able to use it
unless it has been granted USAGE on the containing schema as
well.

Schemas

Schemas - 5 - Visibility

In this context visibility refers to the need to qualify the name of
the objects in a database with their schema. In general an
object is fully qualified in the following form.

[database.]schema.object[parameters]

Because you must be connected to a database for interacting
with PostgreSQL, its name is always implicit. Qualifying objects
with their schema is a good habit and will spare you many
problems in the future. If you use objects in the database
without qualifying them with their schema, PostgreSQL will
search for it in the schemas listed in the user’s property
search_path.

Schemas

Schemas - 6 - search_path

p The content of search_path tells PostgreSQL in which schemas
it must look for objects

p Objects created without schema qualification will be created in
the first available schema on the list, provided the role has
CREATE privilege on the schema

p The usage of search_path is convenience. Get used to always
qualify the object with its schema in your code

See your current search_path

admin@uci.localhost=> SHOW search_path;
search_path

"$user", public

Schemas

Schemas - 7 - search_path

Modify your search_path in the current session.

SET search_path=public;

Reset your search_path to the value configured in your role.

RESET search_path;

Modify search_path permanently. Note each user can perform
this action on his own search_path.

ALTER ROLE rolename [IN DATABASE database_name] SET search_path=public;

See search_path of another user.

SELECT rolname, rolconfig FROM pg_roles WHERE rolname = ’user1’;
rolname | rolconfig

---------+-----------------------------------
user1 | {"search_path=\"$user\", public"}

Outline

Outline

1 Introduction

2 Databases and Roles

3 Schemas

4 Tables, Views and Sequences

5 Functions and Other Objects

6 Default Privileges

7 Organize Access Control

8 Conclusion

Tables, Views and Sequences

Tables, Views and Sequences

p Tables are the data containers within a database. This is
probably the best known object within a database.

p From a user perpective, views are like tables. In fact they are
statements that put together columns of one or more tables,
along with additional values that may be computed from them.
They mostly are used to hide complexity and to customize data
selection to users’ needs. In PostgreSQL views can be
updatable if the underlying structures are trivial.

p Secuences are related to tables inasmuch as they are used to
generate values that are unique across transactions in the
context of the database. Thanks to this characteristic sequences
may supply values for the primary key of a table.

Tables, Views and Sequences

Tables and Views privileges - 1 - Basics
Tables and views are contained in a schema. Notice that
privileges granted, only can be consumed if the grantee also
has been granted USAGE privilege on the containing schema.
Obviously a role should also have CONNECT privilege to the
database. If granted to views the following privileges apply on
the underlying table.

p SELECT allows reading rows from a table. It can be granted on
all columns or a subset of them.

p INSERT is needed to add rows to a table. It can be granted on
all column or a subset of them.

p UPDATE enables the grantee to modify existing records of a
table. Again the grant can extend to all columns or be limited to
a number of them.

p DELETE allows removing records from a table.

Tables, Views and Sequences

Tables and Views privileges - 2 - Dependencies
Besides privileges on the container objects, some of the table
privileges have dependencies on other objects’ privileges at the
same level and even between them.

p INSERT requires USAGE on all sequences used by DEFAULT
clauses to provide column values in the table.

p UPDATE needs to search for the record(s) to modify and requires
therefore SELECT on the same table.

p DELETE is similar to update and also requires SELECT on the
same table.

Tables, Views and Sequences

Tables and Views privileges - 3 - Dependencies
Notice that error messages can be quite confusing. Consider
the following example.
admin=> CREATE SCHEMA test CREATE TABLE test (id INTEGER);
admin=> GRANT INSERT, UPDATE ON test.test TO user1;

user1=> INSERT INTO test VALUES (9);
ERROR: relation "test" does not exist

user1=> INSERT INTO test.test VALUES (9);
ERROR: permission denied for schema test

admin=> GRANT USAGE ON SCHEMA test TO user1;

user1=> INSERT INTO test.test VALUES (9);
INSERT 0 1
user1=> UPDATE test.test SET id = 10 WHERE id = 9;
ERROR: permission denied for relation test

user1=> SELECT has_table_privilege(’test.test’,’update’);
has_table_privilege

t

user1=> SELECT has_table_privilege(’test.test’,’select’);
has_table_privilege

f

Tables, Views and Sequences

Tables and Views privileges - 4
Tables know some additional privileges.

p TRUNCATE allows emptying the whole table with the SQL
statement of the same name.

p REFERENCES allows the grantee to create a foreign key in the
table using the column(s) he’s been granted the privilege. The
user also must have the same privilege on the column(s) of the
referenced table.

p TRIGGER is needed in order to create a trigger on the table.
Notice that this has nothing to do with the privilege of writing or
using a trigger function.

Tables, Views and Sequences

Tables and Views privileges - 5 - Columns
SELECT, INSERT, UPDATE and REFERENCES can be granted
to a subset of the table’s columns. In order to achieve this
target you cannot revoke privileges on single columns after you
have granted them to the whole table. Instead you must revoke
the privilege on the table and then grant it to the columns you
want to allow the access to.
admin=> GRANT INSERT ON test.test TO user1;
admin=> REVOKE INSERT (id) ON test.test FROM user1;
admin=> \dp
Schema | Name | Type | Access privileges | Column access privileges

--------+------+-------+-------------------------+--------------------------
test | test | table | charles=arwdDxt/charles+|

| | | user1=a/charles |

admin=> REVOKE INSERT ON test.test FROM user1;
admin=> GRANT INSERT (id) ON test.test TO user1;
admin=> \dp
Schema | Name | Type | Access privileges | Column access privileges

--------+------+-------+-------------------------+--------------------------
test | test | table | charles=arwdDxt/charles | id: +

| | | | user1=a/charles

Tables, Views and Sequences

Tables and Views privileges - 6
As shown in the previous slide the psql command \dp can be
used to diplay the ACL of the objects in the schemas. There are
some alternatives.

p The psql command \z is equivalent to \dp

p For single objects and privileges you can use the access
privilege inquiry functions.

has_<object_type>_privilege([rolename,] object_name, [column_name,] privilege)

We have used one of these functions to investigate the
privileges of a table and the error messages issued by
PostgreSQL.

Outline

Outline

1 Introduction

2 Databases and Roles

3 Schemas

4 Tables, Views and Sequences

5 Functions and Other Objects

6 Default Privileges

7 Organize Access Control

8 Conclusion

Functions and Other Objects

Functions - 1

p Functions extend the capability of the database.

p Encapsulate complex operations difficult to achieve with plain
SQL.

p Reduce the amount of network traffic.
p Automate tasks, e.g. with triggers.

p They run on the server and are called with a SELECT statement.

p Functions only know the privilege EXECUTE.

p PUBLIC is granted EXECUTE on functions at creation time
by default, but. . .

p The user must have USAGE privilege on the containing schema
and all necessary privileges on the objects manipulated in the
function.

Functions and Other Objects

Functions - 2 - View Privileges
In order to see which privileges are set on a function you have
two choices.

p Use the access privilege inquiry function for functions if you
need to know the privileges of a specific role. You may also use
public to check if a function can be executed by every role.

has_function_privilege(rolename, function_name, privilege)

p You can also query the PostgreSQL catalog or the
information_schema.

SELECT proname, proacl FROM pg_proc WHERE proname = ’<function_name>’;

SELECT grantor, grantee, routine_name, privilege_type
FROM information_schema.routine_privileges
WHERE routine_name = ’<function_name>’;

Functions and Other Objects

Other Objects - 1

p LANGUAGE: Privilege USAGE allows the grantee to write functions
in that language. Untrusted languages can only be used by
superuser. The privilege is granted to PUBLIC by default.

p TYPE: USAGE is granted by default to PUBLIC and allows
grantees to use the type in the creation of objects such as tables
and functions.

p DOMAIN: Is an existing TYPE with some constraints. Grantees
can receive the USAGE privilege to use the DOMAIN.

p LARGE OBJECT

p SELECT read the large object.
p UPDATE modify, i.e. write to the large object.

Functions and Other Objects

Other Objects - 2

p FOREIGN DATA WRAPPER: Privilege USAGE allows the grantee
to create a link to an external database Server using the data
wrapper.

p TABLESPACE: Only knows the privilege CREATE to allow the
creation of databases by default in the given TABLESPACE
(eventually specific space on disk).

The objects that we have seen in this last section and their
privileges are usually not relevant for normal daily operations.
You can find more details on their usage and characteristics in
the official PostgreSQL documentation.

Outline

Outline

1 Introduction

2 Databases and Roles

3 Schemas

4 Tables, Views and Sequences

5 Functions and Other Objects

6 Default Privileges

7 Organize Access Control

8 Conclusion

Default Privileges

Default Privileges - 1
PostgreSQL set default privileges on some objects to PUBLIC
by default. You can find them in the official documentation in
the notes on the SQL statement GRANT.

Here for your convenience the list of default privileges:

p CONNECT and TEMPORARY on databases.

p EXECUTE on functions.

p USAGE on languages.

Besides, in a newly created database PUBLIC will have USAGE
and CREATE privileges on the public schema.

Default Privileges

Default Privileges - Modify
Due to security requirements you may want to modify one or
more of the default privileges, e.g. allowing only certain roles to
connect to a database or to execute some functions.
It is also possible to change the default privileges or create your
own ones. For that purpose you can use the PostgreSQL
statement that follows in a simplified form (the complete
command can be seen in the official documentation).
ALTER DEFAULT PRIVILEGES FOR ROLE rolename [IN SCHEMA schema_name]
{GRANT|REVOKE} privilege(s) ON {TABLES|SEQUENCES|FUNCTIONS|TYPES}
{TO|FROM} rolename(s)

If you want to “delete” a default privileges setting you must use
the same statement above using exactly the opposite values for
{GRANT|REVOKE} and {TO|FROM}.
Notice that the scope of default privileges is the current
database. The settings will not have any impact on other
databases.

Default Privileges

Default Privileges - 3 - View
You can view the existing default privileges using the psql
command \ddp. If the list is empty then the default privileges
mentioned in the first slide of this section apply.
Examples
admin=> ALTER DEFAULT PRIVILEGES FOR ROLE admin GRANT select ON TABLES TO user1;
admin=> \ddp

Default access privileges
Owner | Schema | Type | Access privileges

-------+--------+-------+---------------------
admin | | table | admin=arwdDxt/admin+

| | | user1=r/admin

This is equivant to say: Each time that admin creates a table in
any schema in this database, grant read access to user1. You
can remove the default privilege as follow.
admin=> ALTER DEFAULT PRIVILEGES FOR ROLE admin REVOKE select ON TABLES FROM user1;
admin=> \ddp

Default access privileges
Owner | Schema | Type | Access privileges

-------+--------+------+-------------------
(0 rows)

Outline

Outline

1 Introduction

2 Databases and Roles

3 Schemas

4 Tables, Views and Sequences

5 Functions and Other Objects

6 Default Privileges

7 Organize Access Control

8 Conclusion

Organize Access Control

Introduction

We have seen how to grant and revoke privileges to roles.
Depending on the complexity of the database design and on
the numbers of users in your cluster, this could become difficult
to manage.

In this section we will see some techniques that can be used in
order to simplify to some extent privileges management.

In particular how to use roles to centralize privileges to a few
manageable units, how to restrict access to tables using views
and how to grant access indirectly through functions.

Organize Access Control

Groups and Inheritance - 1

In PostgreSQL users and groups are the same object role. A
group is a role that does not have the LOGIN attribute set. The
basic idea behind using groups is that instead of granting or
revoking privileges to every single user, you customize those
privileges for a group or a small set of group, depending on
your requirements and then grant the group (i.e. the role) to all
users that share the same privileges.

What makes this possible is the inheritance of the privileges
from the granted role to the grantee. The grantee receives
through the membership in a role, all its privileges as if these
were granted directly to him.

Organize Access Control

Groups and Inheritance - 2
Example:
CREATE ROLE accountants NOLOGIN;
GRANT SELECT, INSERT, UPDATE, DELETE ON accounts TO accountants;

GRANT accountants TO jonathan;

p We create a group named accountants and grant it privileges on
table accounts.

p Then we grant the group accountants to a user jonathan thus
enabling him to manipulate data of the accounts table.

p The big advantage of this approach becomes visible if you have
more than one user that needs this set of privileges.
p If privileges for all accountants change over time you only need to

change the privileges of the group.
p If an accountant leaves the company or a new one is hired you

only need to revoke the group membership from the leaving one
and grant it to the new one.

Organize Access Control

Groups and Inheritance - 3 - Careful
This flexible approach requires some caution when
implemented.

p The granted role inherits the privileges directly if the grantee role
has the INHERIT attribute set (which is the default), but can
inherit also the attributes of the granted role if the grantee issues
a SET ROLE rolename command.

p As an example: If the granted role has the attribute
CREATEROLE, the grantee can impersonate the granted role
using SET ROLE and manipulate database users.

p A user can grant himself to another user, thus granting access to
all objects he has privileges on. If the granted role is the owner
of objects, this extends to their destruction.

Organize Access Control

Groups and Inheritance - 4 - Evil on Earth
Never do that on your systems!
admin=> CREATE ROLE evil LOGIN PASSWORD ’xxx’;
admin=> \du
Role name | Attributes | Member of

-----------+--+-----------
admin | Create role, Create DB | {}
evil | | {}

admin=> CREATE DATABASE test;
CREATE DATABASE

admin=> \c uci evil
FATAL: permission denied for database "uci"
admin=> GRANT admin TO evil;
admin=> \c uci evil
You are now connected to database "uci" as user "evil".
evil=> SET ROLE admin;
evil=> DROP DATABASE test;
DROP DATABASE
evil=> ALTER ROLE admin NOLOGIN;
ALTER ROLE
evil=> \c - admin
FATAL: role "admin" is not permitted to log in
evil=> GRANT charles TO evil;
ERROR: must be superuser to alter superusers

Organize Access Control

Groups and Inheritance - 5 - What can you do?

p First of all make sure that you have a working policy for backup
and restore of your database.

p Never grant superuser roles or roles with special attributes or
object owners to others, unless you have a very good reason for
it.

p If you cannot trust your users not to grant themselves to other,
you may do the following.

1. Create all users with NOINHERIT. Let groups inherit privileges
instead.

2. Don’t grant any privileges directly to users, only through groups.

3. Don’t grant the CONNECT privilege on databases to the groups,
only to individual users.

Organize Access Control

Groups and Inheritance - 6 - Group Members
You can find which users are in a group querying the catalog.
For convenience we restrict the query to those users that have
directly or indirectly CONNECT privilege on the database uci.
You may modify the query to search for all members of a group
or all groups a user belogs to. However, in this form, you don’t
see indirections through group levels.
SELECT rg.rolname AS group_name,

rr.rolname AS role_name,
gr.rolname AS grantor

FROM pg_auth_members m
JOIN pg_roles rg ON (rg.oid = m.roleid)
JOIN pg_roles rr ON (rr.oid = m.member)
JOIN pg_roles gr ON (gr.oid = m.grantor)
WHERE has_database_privilege(rr.rolname,’uci’,’connect’)
ORDER BY rg.rolname, rr.rolname;

You can also get a similar information using the psql command
\du.

Organize Access Control

Groups and Inheritance - 7 - Wrap up

Working with non inheriting users will add on your application
developers an additional layer of complexity. They will have to
perform a SET ROLE to the group in the session after user
login. You can also see this as an asset and configure
individual logins for users and group privileges for applications.
This will be reflected in the variables SESSION_USER (the real
user) and CURRENT_USER (the impersonated user).

More important than this, make sure that you can trust your
users. If this is not the case, then you probably have a bigger
problem anyway.

Organize Access Control

Views and Security Definer Functions
So far we have seen the basics of the authorization system of
PostgreSQL. We have seen how to grant and revoke privileges
to objects, which privileges can be granted to specific objects
and how a privilege may require granting others in order to be
consumed.

Now we will show two practices that can be used to solve other
problems:

p How can you extend the control over a table at the row level?

p How can you allow users to make only specific changes to a
table without granting direct access to it?

Organize Access Control

Views - 1

p Views are a way to manipulate what users can see. Besides
defining which columns the view returns, you can also select a
subset of rows based on a WHERE clause in the statement
definition.

p Views that don’t add columns to a table are writable. Since
UPDATE and DELETE require the SELECT privilege, users end
up being able to modify only rows that they can see.

p Since version 9.4 views can have a CHECK OPTION that prevent
users from changing fields that would make the row invisible to
them. This can happen if a column that a user can modify is in
any condition of the WHERE clause.

Organize Access Control

Views - 2

p Now, if you create a view on a table that should deliver different
result sets to different users, you may apply the authorization
rules on the view instead of on the table.

p Privileges granted on a view extend to the underlying table, but
only through the view and not directly.

Organize Access Control

Security Definer Functions - 1

In some occasions a DBA must grant privileges that create
unexpected threats. In a previous exercise we created a table
for logging user actions in a table and filled the table using a
trigger and a trigger function.

In order to make it work we had to grant INSERT privilege to
the users on the log table. This also allows users to insert
records directly into the log table, which is probably not what
was intended.

A way to avoid this situation is using security definer functions.

Organize Access Control

Security Definer Functions - 2

p A security definer function can be implemented exactly in the
same way as any other function. The difference is that you must
declare it as such with the keyword SECURITY DEFINER.

CREATE OR REPLACE FUNCTION operations.log_changes()
RETURNS TRIGGER
SECURITY DEFINER
AS $$
[...]

p A security definer function is executed with the privileges of the
user that created it6.

p This gives you flexibility, but as usual you must take some
additional security measures.

6This is comparable to the SUID bit on X-like systems.

Organize Access Control

Security Definer Functions - 3
The PostgreSQL official documentation gives some important
points to consider when writing security definer functions.

p Avoid having writeable schemas by anyone in the search_path,
in particular pg_temp (implicit at the start of search_path). Set
the schema at the end of search_path in the function declaration.

[...]
$$ LANGUAGE plpgsql
SECURITY DEFINER
SET search_path = admin, pg_temp;

p Revoke EXECUTE from PUBLIC and grant it to your users
explicitly.

p Create the function and set the privileges in a single transaction.
BEGIN;
CREATE FUNCTION ... SECURITY DEFINER;
REVOKE ALL ON FUNCTION ... FROM PUBLIC;
GRANT EXECUTE ON FUNCTION ... TO ...;
COMMIT;

Organize Access Control

Security Definer Functions - 4

It is now clear that if a user can execute a function with the
privileges of the creator and assuming that the creator has the
necessary privileges to perform the actions listed in the
function, that user will be able to perform actions for which he
may not have the necessary privileges directly.

In our log table example that means recreating the trigger
function as security definer, granting EXECUTE on it to
legitimate users and revoke the INSERT privilege from
everybody on the log table.

Organize Access Control

Row Level Security - 1

p RLS is a new feature introduced with PostgreSQL version 9.5.

p The documentation is available in the development section:
http://www.postgresql.org/docs/devel/static/ddl-rowsecurity.html

p In order to use RLS you need to perform two steps.

1. Create one or more policies for a table.

2. Enable row level security on that table using ALTER TABLE.

Organize Access Control

Row Level Security - 2 - Policies

p A policy is created using the new command CREATE POLICY.

CREATE POLICY name ON table_name
[FOR { ALL | SELECT | INSERT | UPDATE | DELETE }]
[TO { role_name | PUBLIC | CURRENT_USER | SESSION_USER } [, ...]]
[USING (using_expression)]
[WITH CHECK (check_expression)]

p A policy is per table an must have a unique name among that
table policies. Different tables may have policies with the same
name.

p FOR indicates the commands subject to the policy. The default is
ALL.

p TO specifies for which role(s) the policy must be applied to. If
omitted the default is PUBLIC.

Organize Access Control

Row Level Security - 3 - Policies

p USING is used to specify a condition to apply for filtering rows
from the table while applying the command mentioned in FOR.
The condition or set of conditions must return a boolean. If
policies are defined for individual commands, this condition can
be specified for all commands but INSERT.

p WITH CHECK is used when an INSERT or an UPDATE tries to
create a new row. Therefore this clause can only be applied to
those commands.

p When using FOR ALL the condition is applied to all commands,
which can be handy at times, but also could lead to unwanted
results.

Organize Access Control

Row Level Security - 4 - Policies

p The use case implemented in the previous section using a view,
could be done with a policy as follows.

CREATE POLICY ON operations.catalogue
FOR ALL
TO uci_users
USING (name = SESSION_USER)
WITH CHECK (name = SESSION_USER);

ALTER TABLE operations.catalogue ENABLE ROW LEVEL SECURITY.

p The policies can be seen using \dp.

Name | Policies
-----------+---
catalogue | uci_users_policy: +

| (u): (responsible = ("session_user"())::text)+
| (c): (responsible = ("session_user"())::text)+
| to: uci_users

Outline

Outline

1 Introduction

2 Databases and Roles

3 Schemas

4 Tables, Views and Sequences

5 Functions and Other Objects

6 Default Privileges

7 Organize Access Control

8 Conclusion

Conclusion

Resources

p Sources & more: http://www.schmiedewerkstatt.ch/uci

p Online documentation:
http://www.postgresql.org/docs/9.4/interactive/index.html

Conclusion

Contact

p SwissPUG: clavadetscher@swisspug.org
http://www.swisspug.org

p Work: clavadetscher@kof.ethz.ch
http://www.kof.ethz.ch

p Private: charles@schmiedewerkstatt.ch
http://www.schmiedewerkstatt.ch

Conclusion

Thank you

Thank you very much for your attention!

Feedback

Q&A

	Introduction
	Databases and Roles
	Schemas
	Tables, Views and Sequences
	Functions and Other Objects
	Default Privileges
	Organize Access Control
	Conclusion

